
United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Rockingham County, New Hampshire**

Lord-Stolarz Property, Windham, NH

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

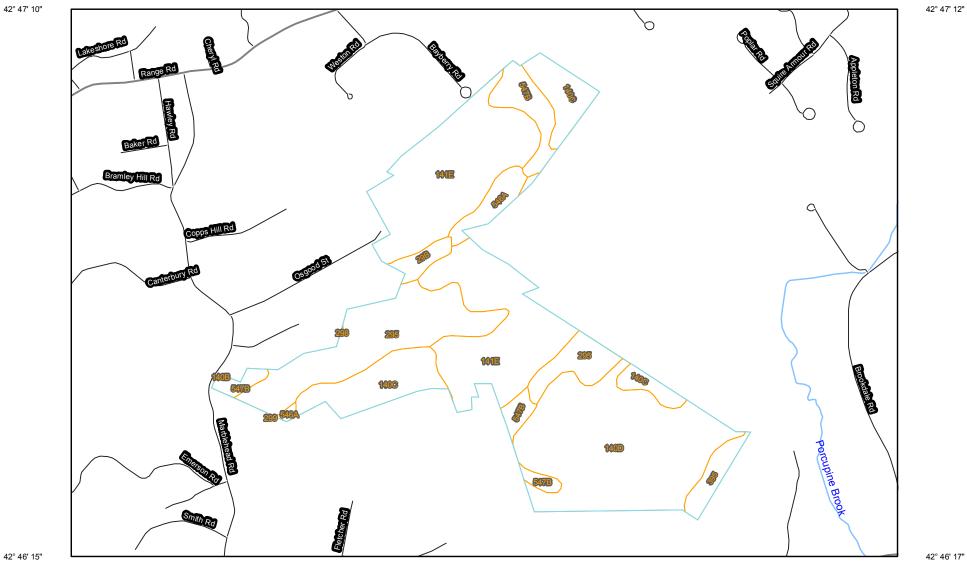
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state_offices/).

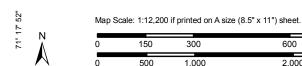
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.


Contents


Preface	2
Soil Map	
Soil Map (Lord-Stolarz Property, Windham, NH)	
Legend	7
Map Unit Legend (Lord-Stolarz Property, Windham, NH)	8
Map Unit Descriptions (Lord-Stolarz Property, Windham, NH)	8
Rockingham County, New Hampshire	10
29B—Woodbridge fine sandy loam, 3 to 8 percent slopes	10
140B—Chatfield-Hollis-Canton complex, 3 to 8 percent slopes, very	
stony	10
140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very	
stony	.12
140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very	
stony	.15
141E—Hollis-Rock outcrop-Chatfield complex, 15 to 60 percent slopes	.17
295—Greenwood mucky peat	
298—Pits, sand and gravel	
299—Udorthents, smoothed	
395—Chocorua mucky peat	
546A—Walpole very fine sandy loam, 0 to 5 percent slopes	.21
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	.22
References	24

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map (Lord-Stolarz Property, Windham, NH)

71° 17' 54"

0	150	300	600	Meters 900
0	500	1,000	2,000	Feet 3,000

42° 46' 17"

71° 16' 0"

71° 16' 2"

MAP LEGEND			MAP INFORMATION	
Area of Interest (AOI)	a	Very Stony Spot	Map Scale: 1:12,200 if printed on A size (8.5" × 11") sheet.	
Area of Inter	~~	Wet Spot		
Soils		Other	The soil surveys that comprise your AOI were mapped at 1:24,000.	
Soil Map Un	its	I Line Features	Warning: Soil Map may not be valid at this scale.	
Special Point Feature		Gully	Warning. Soli Map may not be valid at this scale.	
 Blowout 	12.1	Short Steep Slope	Enlargement of maps beyond the scale of mapping can cause	
Borrow Pit	~ .	Other	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting	
💥 🛛 Clay Spot	Political	Features	soils that could have been shown at a more detailed scale.	
 Closed Depr 		Cities		
🔀 🛛 Gravel Pit	Water Fe	atures	Please rely on the bar scale on each map sheet for accurate map	
Gravelly Spo	ot 🛹	Streams and Canals	measurements.	
Δ Landfill	Transpor	tation	Source of Map: Natural Resources Conservation Service	
▲ Lava Flow	+++	Rails	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83	
Marsh or sw	amp 💉	Interstate Highways	Cooldinate System. OTMIZONE THIN NADOS	
😤 Mine or Qua	irry 📈	US Routes	This product is generated from the USDA-NRCS certified data as of	
 Miscellaneo 	us Water	Major Roads	the version date(s) listed below.	
Perennial W		Local Roads	Soil Survey Area: Rockingham County, New Hampshire	
			Survey Area Data: Version 11, Oct 27, 2009	
	φ.		Date(s) aerial images were photographed: 8/28/2003	
+ Saline Spot				
Sandy Spot			The orthophoto or other base map on which the soil lines were	
😑 Severely Ero	oded Spot		compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting	
Sinkhole			of map unit boundaries may be evident.	
Slide or Slip				
ø Sodic Spot				
🚆 Spoil Area				
Stony Spot				

Map Unit Legend (Lord-Stolarz Property, Windham, NH)

Rockingham County, New Hampshire (NH015)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
29B	Woodbridge fine sandy loam, 3 to 8 percent slopes	2.9	1.4%			
140B	Chatfield-Hollis-Canton complex, 3 to 8 percent slopes, very stony	0.1	0.0%			
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	23.2	11.4%			
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony	52.2	25.7%			
141E	Hollis-Rock outcrop-Chatfield complex, 15 to 60 percent slopes	67.8	33.3%			
295	Greenwood mucky peat	34.7	17.1%			
298	Pits, sand and gravel	0.0	0.0%			
299	Udorthents, smoothed	0.0	0.0%			
395	Chocorua mucky peat	4.3	2.1%			
546A	Walpole very fine sandy loam, 0 to 5 percent slopes	5.3	2.6%			
547B	Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	12.7	6.2%			
Totals for Area of Interest		203.3	100.0%			

Map Unit Descriptions (Lord-Stolarz Property, Windham, NH)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a

particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

29B—Woodbridge fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 50 to 1,000 feet *Mean annual precipitation:* 35 to 45 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 120 to 200 days

Map Unit Composition

Woodbridge and similar soils: 80 percent *Minor components:* 20 percent

Description of Woodbridge

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.9 inches)

Interpretive groups Land capability (nonirrigated): 2e

Typical profile

0 to 8 inches: Fine sandy loam 8 to 22 inches: Fine sandy loam 22 to 60 inches: Fine sandy loam

Minor Components

Paxton

Percent of map unit: 7 percent

Ridgebury

Percent of map unit: 7 percent Landform: Depressions

Scituate

Percent of map unit: 6 percent

140B—Chatfield-Hollis-Canton complex, 3 to 8 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 1,600 feet

Mean annual precipitation: 28 to 46 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 60 to 180 days

Map Unit Composition

Chatfield and similar soils: 35 percent *Canton and similar soils:* 20 percent *Hollis and similar soils:* 20 percent *Minor components:* 25 percent

Description of Chatfield

Setting

Parent material: Till

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 20 inches: Fine sandy loam 20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

Description of Hollis

Setting

Parent material: Till

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 2 inches: Fine sandy loam 2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

Description of Canton

Setting

Parent material: Till

Properties and qualities

Slope: 3 to 8 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam 21 to 60 inches: Loamy sand

Minor Components

Other inclusions

Percent of map unit: 8 percent Landform: Depressions

Greenwood & ossipee

Percent of map unit: 5 percent Landform: Bogs

Newfields

Percent of map unit: 5 percent

Walpole

Percent of map unit: 5 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 2,100 feet

Mean annual precipitation: 28 to 46 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 60 to 195 days

Map Unit Composition

Chatfield and similar soils: 35 percent *Canton and similar soils:* 20 percent *Hollis and similar soils:* 20 percent *Minor components:* 25 percent

Description of Chatfield

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 20 inches: Fine sandy loam 20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

Description of Hollis

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 2 inches: Fine sandy loam 2 to 13 inches: Cobbly fine sandy loam

13 to 17 inches: Unweathered bedrock

Description of Canton

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam 21 to 60 inches: Loamy sand

Minor Components

Not named

Percent of map unit: 7 percent

Newfields

Percent of map unit: 5 percent

Ossipee and greenwood

Percent of map unit: 5 percent Landform: Bogs

Scarboro

Percent of map unit: 3 percent Landform: Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 56 inches *Mean annual air temperature:* 39 to 55 degrees F *Frost-free period:* 60 to 200 days

Map Unit Composition

Chatfield and similar soils: 35 percent Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent

Description of Chatfield

Setting

Parent material: Till

Properties and qualities

Slope: 15 to 35 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 20 inches: Fine sandy loam 20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

Description of Hollis

Setting

Parent material: Till

Properties and qualities

Slope: 15 to 35 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 10 to 20 inches to lithic bedrock Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Fine sandy loam 2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

Description of Canton

Setting

Parent material: Till

Properties and qualities

Slope: 15 to 35 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam 21 to 60 inches: Loamy sand

Minor Components

Montauk

Percent of map unit: 7 percent

Not named

Percent of map unit: 5 percent

Ossipee and greenwood

Percent of map unit: 5 percent Landform: Bogs

Scarboro

Percent of map unit: 3 percent Landform: Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

141E—Hollis-Rock outcrop-Chatfield complex, 15 to 60 percent slopes

Map Unit Setting

Elevation: 0 to 1,000 feet *Mean annual precipitation:* 30 to 56 inches *Mean annual air temperature:* 45 to 55 degrees F *Frost-free period:* 120 to 200 days

Map Unit Composition

Hollis and similar soils: 35 percent *Rock outcrop:* 30 percent *Chatfield and similar soils:* 15 percent *Minor components:* 20 percent

Description of Hollis

Setting

Parent material: Till

Properties and qualities

Slope: 15 to 60 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Fine sandy loam 2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

Description of Rock Outcrop

Properties and qualities

Depth to restrictive feature: 0 inches to lithic bedrock

Description of Chatfield

Setting

Parent material: Till

Properties and qualities

Slope: 15 to 60 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 20 inches: Fine sandy loam 20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

Minor Components

Canton

Percent of map unit: 5 percent

Montauk

Percent of map unit: 5 percent

Not named

Percent of map unit: 5 percent

Scarboro, ossipee, greenwood

Percent of map unit: 3 percent Landform: Bogs

Walpole

Percent of map unit: 2 percent Landform: Depressions

295—Greenwood mucky peat

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 45 inches *Mean annual air temperature:* 39 to 52 degrees F Frost-free period: 60 to 195 days

Map Unit Composition

Greenwood and similar soils: 80 percent *Minor components:* 20 percent

Description of Greenwood

Setting

Landform: Bogs Parent material: Organics

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water capacity: Very high (about 31.7 inches)

Interpretive groups

Land capability (nonirrigated): 7w

Typical profile

0 to 60 inches: Mucky peat

Minor Components

Chocorua

Percent of map unit: 8 percent Landform: Bogs

Ossipee

Percent of map unit: 8 percent Landform: Bogs

Scarboro

Percent of map unit: 4 percent Landform: Swamps

298—Pits, sand and gravel

Map Unit Composition Pits: 100 percent

299—Udorthents, smoothed

Map Unit Composition

Udorthents and similar soils: 100 percent

Description of Udorthents

Properties and qualities

Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

395—Chocorua mucky peat

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 55 inches *Mean annual air temperature:* 39 to 52 degrees F *Frost-free period:* 60 to 200 days

Map Unit Composition

Chocorua and similar soils: 80 percent *Minor components:* 20 percent

Description of Chocorua

Setting

Landform: Bogs Parent material: Organic material over outwash

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water capacity: Very high (about 15.4 inches)

Interpretive groups

Land capability (nonirrigated): 8w

Typical profile

0 to 25 inches: Mucky peat 25 to 60 inches: Coarse sand

Minor Components

Deerfield

Percent of map unit: 4 percent

Greenwood

Percent of map unit: 4 percent Landform: Bogs

Pipestone

Percent of map unit: 4 percent Landform: Outwash terraces

Scarboro

Percent of map unit: 4 percent Landform: Outwash terraces

Walpole

Percent of map unit: 4 percent *Landform:* Ground moraines

546A—Walpole very fine sandy loam, 0 to 5 percent slopes

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 45 inches *Mean annual air temperature:* 46 to 52 degrees F *Frost-free period:* 100 to 195 days

Map Unit Composition

Walpole and similar soils: 85 percent *Minor components:* 15 percent

Description of Walpole

Setting

Landform: Depressions

Properties and qualities

Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Drainage class: Poorly drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: About 0 to 12 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 4.6 inches)

Interpretive groups

Land capability (nonirrigated): 4w

Typical profile

0 to 7 inches: Very fine sandy loam 7 to 16 inches: Sandy loam 16 to 60 inches: Gravelly loamy sand

Minor Components

Scarboro

Percent of map unit: 8 percent Landform: Depressions

Newfields

Percent of map unit: 7 percent

547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 45 inches *Mean annual air temperature:* 46 to 52 degrees F *Frost-free period:* 100 to 195 days

Map Unit Composition

Walpole and similar soils: 80 percent Minor components: 20 percent

Description of Walpole

Setting

Landform: Depressions

Properties and qualities

Slope: 3 to 8 percent Surface area covered with cobbles, stones or boulders: 0.1 percent Depth to restrictive feature: More than 80 inches Drainage class: Poorly drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: About 0 to 12 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 4.6 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 7 inches: Very fine sandy loam 7 to 16 inches: Sandy loam 16 to 60 inches: Gravelly loamy sand

Minor Components

Scarboro

Percent of map unit: 10 percent Landform: Depressions

Newfields

Percent of map unit: 5 percent

Squamscott

Percent of map unit: 5 percent *Landform:* Marine terraces

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/ United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.